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Abstract

Prior to remediation at the abandoned Cu–Zn Penn Mine in the Foothills massive sulfide belt of the Sierra Nevada, CA, acid

mine drainage (AMD) was created, in part, by the subaerial oxidation of sulfides exposed on several waste piles. To support

remediation efforts, a mineralogical study of the waste piles was undertaken by acquiring reflectance spectra (measured in the

visible to short-wave infrared range of light: 0.35–2.5 Am) using a portable, digitally integrated pen tablet PC mapping system

with differential global positioning system and laser rangefinder support. Analysis of the spectral data made use of a continuum

removal and band-shape comparison method, and of reference spectral libraries of end-member minerals and mineral mixtures.

Identification of secondary Fe-bearing minerals focused on band matching in the region between 0.43 and 1.3 Am. Identification

of sheet and other silicates was based on band-shape analysis in the region between 1.9 and 2.4 Am. Analysis of reflectance

spectra of characterized rock samples from the mine helped in gauging the spectral response to particle size and mixtures. The

resulting mineral maps delineated a pattern of accumulation of secondary Fe minerals, wherein centers of copiapite and jarosite

formed at low pH (b3) that were surrounded successively by goethite and hematite, which mark progressive increases in pH.

This pattern represents the evolution of acid solutions discharged from the pyritic waste piles and the subsequent accumulation

of secondary precipitates by hydrolysis reactions. The results highlight the high capacity of the pyritic waste to release further

acid mine drainage into the environment, as well as the effectiveness of the mapping method to detect subtle changes in surface

mineralogy and to produce maps useful to agencies responsible for remediating the site.
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1. Introduction

Abandoned mines are one of the most challenging

environmental problems faced by government, com-

munities and the mining industry worldwide. The

effects of historic mining activity in the western USA

are well illustrated in California, where water resour-

ces are threatened by the discharge of acid mine

drainage (AMD) from a plethora of abandoned mines

(California Department of Conservation, 2000). Inad-

equate characterization of AMD-generating mine

wastes is a major obstacle to remediation of their

sites. The abundance and variety of abandoned mines

is such that a complete inventory and assessment of

their environmental impact is far from complete,

which hinders the formulation of scientifically and

economically sound strategies for remediation.

The purpose of this paper is to present an

alternative and efficient way to characterize aban-

doned mines to assess their potential for AMD

discharge. The Penn Mine demonstrates the type of

limitations typically encountered in the remediation of

AMD-generating sites, such as difficult access to

relevant areas due to the steep topography of waste

piles, unstable and unknown mine workings, sparse

accurate historical records, and uncertainty regarding

the metal and sulfate load to adjacent water bodies.

Uncertainty regarding metal loads can arise from

difficulties in detecting and mapping minerals such as

water-soluble Fe sulfates and nanocrystalline Fe

phases. Detection of water-soluble sulfates depends

on the amount and timing of precipitation prior to

mapping. Mapping of water-soluble sulfates is critical

because some of these minerals incorporate consid-

erable amounts of heavy metals that can be quickly

released into water bodies after rainfall (Nordstrom

and Dagenhart, 1978; Jambor et al., 2000; Takagi and

Brimhall, 2001).

Fast and accurate mapping of the mineralogy of

waste piles circumvents many of these problems and

illustrates the need for efficient characterization

methods. Our approach is based on the mapping of

minerals that occur on the surface of waste-rock piles

and their surroundings, focusing on minerals that

serve as indicators of subaerial oxidation of pyrite and

the subsequent formation of AMD. In our mapping

methods, a digital mapping system is used in

combination with a portable reflectance spectrometer
ED P
ROOF

that measures reflected solar light in the range

extending from visible to short-wave infrared.

Recent years have seen increased interest in the

use of remote spectral data to support the character-

ization and remediation of both operating and

abandoned mines (Ferrier, 1999; Swayze et al.,

2000; and references therein). At such sites, the

combination of geology, mining history and past

waste-disposal arrangements often result in geochem-

ical conditions that favor the occurrence of secondary

Fe minerals characteristic of AMD (Alpers et al.,

1994a). Minerals such as Fe-bearing sulfates, oxides

and oxyhydroxides have chemical and structural

properties that make them identifiable by reflectance

spectroscopy. Mineral maps based on reflectance

spectroscopy can then be used by interdisciplinary

teams (Dalton et al., 1998) to identify sources of

acidity, to estimate the possible metal load to water

bodies from soluble sulfate salts and to aid in the

evaluation of the site. The application of spectral data

to this problem has been shown to augment consid-

erably the efficiency of the remediation process,

saving valuable time and resources (Swayze et al.,

2000). At the Penn Mine, Fe mineral maps based on

reflectance spectroscopy illustrated the chemical

processes taking place in the unsaturated waste dumps

and the most active pyrite oxidation bhot spotsQ.
Additional potential applications of the mineral maps

include, but are not limited to, estimation of the

minimum volume of soluble Fe-sulfate salts present

in the waste piles, estimation of the minimum mass of

metals and sulfate likely to be released upon

dissolution of soluble Fe-sulfate salts and the priori-

tization of waste-rock piles for removal.

Chemical analysis-based assessment tools such as

acid–base accounting, net acid-production potential

and acid-neutralizing capacity have the advantage of

providing data regarding the potential reactions,

possible secondary minerals and the processes affect-

ing AMD. In comparison with ground-based reflec-

tance spectroscopy integrated into a digital mapping

system, such chemical methods have the marked

disadvantage of relying on discrete samples that may

fail to produce an encompassing view of the minesite,

the processes acting in it, and where and why critical

minerals accumulate.

Ground-based reflectance spectroscopy has been

used to aid atmospheric calibration (Kruse and Dwyer,
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Fig. 1. Location of the Penn Minesite and other Cu–Zn VMS
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1995) of high-altitude remote-sensing data, to provide

ground-truthing (Swayze et al., 2000) and as a tool for

mineral identification of selected rock outcrops by

limited SWIR spectrometers (Hauff et al., 2000). As

the technology behind portable spectrometers

improves, the combination of spectroscopy with

efficient digital mapping allows workers to concen-

trate on interpreting geochemical processes rather than

simply mapping mineral occurrences. Other factors,

such as availability of resources (i.e., time, atmos-

pheric conditions and accessibility) highlight the need

to make the spectral and spatial links in the field in

order to adapt to unforeseen or changing field

conditions, enabling the use of the evolving map

patterns to delineate effectively the patterns that

indicate AMD. The use of portable reflectance

spectrometers combined with digital portable map-

ping systems equipped with differential global posi-

tioning system (DGPS) receivers and laser

rangefinders facilitates the making of such links by

assigning a precise location to each spectral measure-

ment. Additional advantages of ground-based reflec-

tance spectroscopy over high-altitude remote-sensing

methods include improved reduction of noise intro-

duced by atmospheric water (due to the short distance

between the target and probe, and frequent optimiza-

tion of the instrument with a white reflectance

standard) and flexibility regarding coverage and time

of acquisition.
170
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deposits within the Sierra Nevada Foothill Cu–Zn belt (after Heyl,

1944; Peterson, 1985).
UNCORRE
2. Test area: Penn Mine, Calaveras County, CA

2.1. History of the Penn Mine

The Penn Mine is on the shore of Camanche

Reservoir (Fig. 1), an East Bay Municipal Utility

District (EBMUD) water reservoir on the Mokelumne

River. Mining of Cu–Zn ore and associated smelting

took place at the site from the 1860s to 1959, at which

point the mine was abandoned (Clark and Lydon,

1962). Reports of fish kills, surface runoff to

Camanche Reservoir, elevated metal and SO4 con-

centrations, and low pH in groundwater in the vicinity

of the mine (Hamlin and Alpers, 1996) prompted

efforts for environmental remediation. During 1998–

1999, the mine underwent environmental remediation

under the direction of the EBMUD and the California
Regional Water Quality Control Board-Central Valley

Region.

2.2. Geological setting

Mining activity revolved around a volcanogenic

massive sulfide (VMS) deposit within the 400-km-

long Sierra Nevada Foothill Cu–Zn belt (Fig. 1),

created in association with a sequence of submarine

sedimentary and volcanic rocks within a Jurassic

volcanic island arc (Peterson, 1985, 1988). This VMS

deposit, classified as Sierran Kuroko by Singer

(1992), was formed by hydrothermal activity in which

heated sea water leached metals from existing rocks

and formed stratiform lenses of fine-grained sulfides

upon expulsion, as black smokers, into anoxic marine
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environments (Singer, 1986). The orebodies and the

felsic volcanic rocks that envelop them were subjected

to low-grade metamorphism and deformation during

accretion to the western edge of North America during

the late Jurassic (Martin, 1988). Tertiary quartz

gravels unconformably overlie parts of this sequence

(Peterson, 1985).

Prior to remediation in 1998–1999 at the Penn

Mine, there were 300,000 m3 of solid waste (Davy

Environmental, 1993; Hamlin and Alpers, 1996),

which included waste rock (low-grade ore and pyritic

schist), metallurgical slag, mill tailings, disturbed

bedrock and post-mining materials (infrastructure,

mechanical aggregates and chemical precipitates).

The waste was distributed in at least six waste-rock

piles, three unlined water impoundments built with

waste rock and earthen dams (Fig. 2). For this study,

wastes were further classified as acid-producing or not
UNCORRECT
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Fig. 2. Map of the distribution of waste material and the waste-water

impoundments at the Penn Minesite (Davy Environmental, 1993).

WP1 through WP6 are waste piles 1 through 6 according to scheme

used by Davy Environmental (1993).
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acid-producing according to their mineral makeup,

their relative capability to oxidize and (or) produce

acidity in subaerial conditions, and their abundance

(Table 1). The pyritic quartz schist host-rock, low-

grade massive sulfide ore, greenschist-grade metavol-

canic rock and Tertiary quartz gravel made up most of

the material in the waste-rock piles (Table 1). The

pyritic schist consisted of quartz-muscovite schist

with various degrees of chloritic, sericitic and silicic

alteration. The massive sulfide orebodies contained

fine-grained pyrite, sphalerite, chalcopyrite and wurt-

zite, with minor bornite, tetrahedrite and galena, plus

barite, calcite and gypsum as gangue minerals (Clark

and Lydon, 1962). Low-grade ore consisted of quartz-

muscovite schist with pyrite and sphalerite and

variable chloritic and sericitic alteration. Greenschist

in the waste piles consisted of chloriticized and

metamorphosed basalts with abundant quartz and

epidote. Prior to remediation, secondary minerals as

fine ochreous powders coated many of the rocks in the

waste piles and elsewhere on the property. In addition

to the minerals listed in Table 1, minor occurrences of

secondary fibroferrite [Fe(SO4)(OH)d 5H2O], schulen-

bergite [(Cu,Zn)7(SO4)2(OH)10d 3H2O] and leonite

[K2Mg(SO4)2d 4H2O] were detected by powder X-

ray diffraction in samples from the waste piles.

Hamlin and Alpers (1995) reported occurrences of

bornite, covellite, brochantite [Cu(SO4)(OH)6], halo-

trichite-pickeringite [(Fe,Mg)Al2(SO4)d 22H2O] and

copiapite [Fe2+Fe4
3+(SO4)6(OH)2d 20H2O] on the

waste piles.

2.3. AMD and secondary mineralization at the Penn

Mine

Sulfide minerals in the waste piles and in the mine

workings were subjected to oxidation in the presence

of atmospheric oxygen, microbial communities and

aerated meteoric water (Ritchie, 1994). Measurement

of how fast this process takes place in situ is

complicated by the complex, biologically controlled

oxidation pathway and by difficulties relating meas-

ured rates to poorly understood physical parameters

within a waste-rock pile (Nordstrom and Alpers,

1999a). Nonetheless, a general estimate of the rate

of pyrite oxidation can be obtained from the labo-

ratory-measured rates of oxidation of pyritic material

as measured by flux rates of oxygen depletion. In
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UNCORRlaboratory studies in which measurable oxygen was

depleted by reaction with pyritic material, oxidation

rates ranged from 0.03�10�8 to 60�10�8 mol m�1

s�1 (Nordstrom and Alpers, 1999a).

The biologically mediated oxidation process

released a low-pH solution, rich in Fe2+, Fe3+ and

SO4, and known as AMD. Before remediation efforts

at the Penn Mine, AMD flowed through the unsatu-

rated waste piles and bedrock to unlined water

impoundments, reaching the groundwater and ulti-

mately the Camanche Reservoir (Alpers et al., 1994b,

1999). Aluminum, Cd, Cu, Fe and Zn released by

mineral dissolution have been detected in significant

amounts in acidic sulfate-rich surface water and

groundwater in the area (Hamlin and Alpers, 1996;

Alpers et al., 1999).
In waste piles, meteoric water is acidified by the

process of sulfide oxidation (mainly microbial oxida-

tion of pyrite) and is then partly neutralized by

hydrolysis reactions with aluminosilicates and other

minerals present in the waste piles as the solution

flows away from active oxidation points. This leads to

the accumulation of Fe sulfates, oxyhydroxides and

oxides in a spatial and temporal sequence that

represents the buffering of the acidic solution as it

moves away from its source (Swayze et al., 2000).

Copiapite and jarosite [KFe3(SO4)2(OH)6] form at pH

values b3, and accumulate near sources of acidity that

are also sources of heavy metals (Fig. 3; Bigham,

1994; Alpers et al., 1994a; Nordstrom and Alpers,

1999a). Goethite [a-FeOOH] forms at pH values

generally less than 6 from the dissolution of previous
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Fig. 3. Model of the accumulation of secondary Fe minerals in Fe sulfide-rich mine-waste environments according to pH values from field data.

Modified from model by Bigham (1994), with additional data from Alpers et al. (1994a) and Nordstrom et al. (1978). Ranges of pH are

approximate and are based on field observations of the aforementioned authors. Solid arrows represent possible paragenetic relationships of

secondary Fe minerals to sulfide oxidation and to each other. Minerals in bold type were identified on waste-rock piles at the Penn Mine during

the course of this study by reflectance spectroscopy.
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minerals, including early-formed goethite and accu-

mulates farther from contaminant sources (Bigham,

1994). Hematite [Fe2O3] accumulates even farther

from the sources of acidity after forming in a pH-

dependent process that may involve the dehydration

and transformation of earlier precipitates, such as

those of goethite and ferrihydrite [nominally

Fe5HO8d H2O], with maximum production occurring

at approximately pH 8 (Alpers et al., 1994a). The

distribution of these secondary minerals about a

source of acidity and active pyrite oxidation forms a

spatial pattern in which copiapite and jarosite are

relatively abundant near or at the source, and are

surrounded by goethite and hematite (Swayze et al.,

2000). A pattern of this type affords an opportunity to

trace contaminant transport and to identify additional

sources of contaminants. Numerous studies (Plumlee

et al., 1999) have shown a negative correlation

between pH and the concentration of toxic metals in

water draining mines, thus highlighting the impor-

tance of mapping low-pH zones.

Water-soluble sulfates, also known as efflorescent

sulfate salts (Jambor et al., 2000), are among the most

definite indicators of AMD (Nordstrom and Dagen-
Ehart, 1978). These sulfate salts are among the first

products of sulfide oxidation and occur above the

water table, closest to oxidizing pyrite, and in areas

where the exposure of pyrite by erosion and the

evaporation of AMD fluids create extremely low pH

values (Jambor et al., 2000). Metals contained in the

structure of these minerals (such as Fe, Cu, Zn, Pb, Al,

Mn, Mg and K) can be readily released upon the rapid

dissolution of sulfate salts during rainfall events or

increased water flow (Nordstrom and Alpers, 1999b).

The presence of efflorescent sulfate salts on surface

waste piles depends on precipitation and evaporation

rates (Jambor et al., 2000) that affect the pH and metal

content of water in the waste-rock piles. Depending

on when and where samples are collected, chemical

analyses of water and rock samples can underestimate

the extent of soluble sulfate salts. Visual identification

of the salts is hampered by their small crystal size and

by their similar appearance. Widely used methods

such as high-altitude remote sensing commonly do

not have the spatial resolution to identify small fields

of soluble Fe-sulfate salts, and unless the methods are

applied during different times of the year the season-

ality of these salts is missed.
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3. Instrumentation

The system (Fig. 4) used to map the mineral

distribution of surface material at the Penn Mine

incorporates a portable reflectance spectrometer that

measures light in the visible to short-wave infrared

(VNIR/SWIR) range, and a PC pen tablet digital

mapping system supported by a differential GPS

(DGPS) receiver and laser rangefinder equipped with

internal digital inclinometer and magnetic compass.

3.1. Instrumentation: spectroscopy

Collection of field reflectance spectra at the Penn

Mine, as well as reference spectra of selected

mineral samples in controlled laboratory settings,

was completed using a commercially available,

battery-operated, portable reflectance spectrometer

(Fig. 4A). Unlike contact field spectrometers, solar

light in the VNIR/SWIR range that is reflected from

a target is collected through the end of a fiber-optic

cable probe held at a constant distance above the

ground throughout the survey (Fig. 4A). Once

collected by the probe, light is projected into a
UNCORRECT

Fig. 4. I. Montero and G. Brimhall demonstrate the use of the digital mapp

probe. Note that the staff on which the holder rests maintains the probe awa

(2) Target on the ground; (3) fiber-optic cable for transmission of the ligh

operated spectrometer. In B, (5) laser rangefinder with internal digital inclin

inside the backpack; (7) DGPS antenna; (8) pen table portable PC compu
D P
ROOF

diffraction grating, where it is separated by wave-

length and reflected onto the unit’s three detectors.

From 0.35 to 1.05 Am, a silicon photodiode detector

array of 512 channels yields a spectral resolution of

0.003 Am. From 1.05 to 2.50 Am, two scanning

InGaAs detectors have a resolution of 0.030 Am
(Analytical Spectral Devices, 1999). Acquisition of

spectra takes 100 ms per spectrum, after which

manufacturer-provided software uses the response of

the spectrometer to a Spectralonk white reflectance

standard to convert raw data to reflectance (Ana-

lytical Spectral Devices, 1999; use of trade, product

or firm names in this publication is for descriptive

purposes only and does not imply endorsement by the

U.S. government). Collection of the white reference

standard must be done frequently during data collec-

tion, during optimization of the spectrometer, and

after dark-current correction, to maintain high signal-

to-noise ratios and to compensate for changes in sun

angle and for the temporal or spatial variability of

atmospheric conditions, such as humidity. The size of

a target area on the ground is approximately 30 cm2 if

the opening of the fiber-optic cable probe is held at 1

m above the target.
E

ing system. In A: (1) probe holder for the spectrometer’s fiber-optic

y from the operator at a constant height and angle above the ground.

t from the cable opening to the spectrometer; (4) portable, battery-

ometer and magnetic compass; (6) portable DPGS receiver, which is

ter.
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3.2. Instrumentation: digital mapping

The digital mapping system (Fig. 4B) consists of a

battery-powered, pen tablet portable computer run-

ning a WindowsR-based surveying-mapping program

called GeomapperR (Brimhall and Vanegas, 2001).

Location of survey points is supported by a DGPS

receiver and a reflectorless laser rangefinder, which

link to the PC pen tablet computer via serial ports. A

single DGPS receiver uses differential signal correc-

tion broadcast by the Omnistar satellite network,

which we have measured against known locations to

improve the GPS accuracy to approximately F1 m

horizontally. The location of spectral survey points is

determined by a laser rangefinder, which uses an

internal compass and inclinometer to compute a

vector from a base station (as determined by the

DGPS), to the target. The laser rangefinder uses a

laser beam with a 3 mrad divergence (Laser Atlanta,

2000) and an internal compass and inclinometer to

establish the location of a point away from the base

station. Measured independently of the DGPS receiver

errors, we determined the precision of the laser

rangefinder to be approximately 15.3 cm up to a

distance of 300 m.
 T 441
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UNCORREC4. Methods

4.1. Methods: site survey and sample collection

Among the several factors that influenced the

survey at the Penn Mine were the nature of the

surface materials, the topography of the site and the

risks associated with an abandoned minesite. Reme-

diation of the waste materials by several regional and

local agencies was to take place almost immediately

after the completion of the survey, thus limiting the

amount of time available. Furthermore, frequent

rainstorms resulting from the 1998 dEl NiñoT event

proved to be the most limiting factor during the

spectral survey. All spectra reported in this work were

acquired after a 2-week dry period, during 2 low-

humidity days in late May 1998.

Accessible areas on five waste-rock piles were

mapped with spectral measurements regularly spaced

at 5-m intervals. Six remote measurements, spaced at

10-m intervals, were acquired on otherwise inacces-
ED P
ROOF

sible steeper western slopes of WP2 and WP3 (Fig. 2)

from a distance of 5 m using a long-distance foreoptic

attachment that directed light within an 188 solid

angle to the spectrometer’s probe. The use of long-

distance foreoptic attachments has the advantage of

providing meaningful reflectance spectra from dis-

tances of up to 100 m, thus increasing the efficiency

of the method to map inaccessible areas of abandoned

mines. Areas of interest and sampling geometry were

defined on the basis of previous knowledge about the

site (Davy Environmental, 1993; Hamlin and Alpers,

1996) and on insight gained through visual inspection

of the field spectra during acquisition. The grid

spacing was selected on the basis of the size of the

area and available time. Control points were estab-

lished with DGPS along the length of waste piles and

were checked with a surveying tape. From control

points, a mapping operator used the laser rangefinder

to locate the position of a second moving spectrometer

operator. Care was taken to collect spectra over dry

material during the hours from 10 a.m. to 3 p.m.,

when the sun was at less than 408 from its zenith, to

maintain a high signal-to-noise ratio. During survey-

ing, the probe of the spectrometer was held at a height

of approximate 1 m above the ground at 908 from

horizontal, with care to keep shadows or reflective

material away from the ground target.

Sixty spectral measurements were averaged for

each spectrum. Spectra acquisition and logging of

spectra location and identification number in the pen

computer required, on average, 1 min per spectrum.

This included time for spectral corrections (dark-

current correction, optimization of the spectrometers

and acquisition of a white reference) completed at a

rate of one every third spectrum. In total, two operators

acquired 513 field spectra over five waste piles

covering a total area of approximately 25,000 m2

and in b12 h (2 days) accurately surveyed field-spectra

locations and other features of the site. Twenty-four

samples of waste rock were collected and saved in

polypropylene bags as the survey progressed by

scraping the top 2–3 cm of surface material in areas

previously measured by the spectrometer.

4.2. Rock-sample analysis

Post-processing involved the conversion on the

field spectra to ASCII format and uploading of data to
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a computer workstation for mineral identification.

Location and logistic information regarding both the

field spectra and other features were exported into a

geographical information system (GIS) database of

the Penn Mine. After surveying was completed, each

waste-rock sample was carefully oriented, put into a

dark box illuminated with two quartz-halogen lights,

and its reflectance spectrum relative to that of a

SpectralonR standard was measured with the same

spectrometer used during fieldwork. The different

materials observed in each waste-rock sample were

then visually separated into subsamples (greenstone,

pyritic schist or precipitate), ground with an agate

mortar and pestle, and analyzed by powder X-ray

diffraction (XRD) using a Cu X-ray source. The

surfaces of 22 rock samples were analyzed separately

by scratching the top 0.5–1 mm with a stainless steel

tool and analyzing by XRD. The study of the top 1

mm of each rock sample was crucial for under-

standing the influence of substrate materials on the

reflectance spectrum. Additional XRD study was

conducted for 22 rock samples, for which 3 g portions

were finely ground, suspended in distilled water and

gravity-settled onto glass slides to improve detection

of the sheet silicates (hereupon referred to as settling

XRD). The XRD scans were obtained with a step of

0.018 2h, at a scan rate of 2–3 s per step, depending

on the need to minimize X-ray fluorescence from Fe-

rich minerals. Identification of minerals from the

XRD spectra was completed using commercial

matching programs. Although care was taken to check

for them, poorly crystallized nanophase Fe minerals

such as ferrihydrite and schwertmannite were not

identified in the samples analyzed. Hydrous Fe

sulfates such as melanterite or rozenite were also not

identified in the samples analyzed. Previous studies of

the Penn Mine by Hamlin and Alpers (1995) also

failed to detect melanterite or rozenite on the waste

piles. Quartz, albite, muscovite, clinochlore, clinozoi-

site and epidote were detected as the main primary

silicates in the waste piles. Jarosite, goethite and

hematite were the main secondary Fe minerals,

occurring as coatings on larger rock fragments, as

very fine loose grains and as aggregates over pyritic

waste piles. Hematite was the only secondary Fe

mineral in greenstone samples. Muscovite and chlorite

were the most abundant sheet silicates, and even after

settling XRD, illite was observed in only two samples
ED P
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of waste-pile material. Kaolinite was detected in only

two samples, and siderophyllite and glauconite each

were detected in one greenstone sample. Pyrite,

sphalerite, wurtzite and chalcopyrite were the only

sulfides detected in low-grade ore and pyritic schist.

Quartz and albite were the most abundant minerals in

both pyritic schist and greenstones. The XRD study

indicated that most of the finer particles consisted of

secondary Fe minerals, and muscovite and chlorite.

Fine-grained barite and alunite were found in mill

tailings that were not spectrally surveyed.

4.3. Basis for spectral interpretation and mineral

identification

Field reflectance spectra of rocks measured over

the VNIR/SWIR range represent the selective absorp-

tion of sunlight by electrical and vibrational processes

within a mineral’s structure (Gaffey et al., 1993). The

spectra can be used to resolve chemical composition

and crystal structure, and to determine purity.

Electrical processes involving orbital electrons in

transition metals give rise to broad absorption features

that are observed from 0.40 to 1.3 Am (electrical

region, Fig. 5A). Reflectance spectra of Fe minerals

reflect single- and paired-electron transitions between

energy levels in unfilled 3d orbitals and metal-ligand

electron transfers (Sherman and Waite, 1985). The

wavelength and intensity of absorption features in this

region depend on the nature of the crystal field around

the Fe atom and on the nature of the bonds around it

because the nature of magnetic coupling between Fe3+

ions (as influenced by the crystal field) facilitates the

transition of electrons between energy states (Sherman

and Waite, 1985; Townsend, 1987; Rossman, 1976).

Thus, in Fe3+ minerals, subtle differences in the shape

and wavelength of the absorption features detectable

after continuum removal reflect the crystal structure of

the minerals and allow for their identification.

Hematite possesses a structure of closely packed

face-sharing FeO6 octahedra (Burns, 1993), and the

strong antiferromagnetic interactions among the Fe3+

ions affect the electron transitions and electric charge

transfers to create a very strong absorption (delineated

by low reflectance) at wavelengths shorter than 0.55

Am (Rossman, 1996; Fig. 5A). A strong absorption

caused by Fe3+ electron transition is characteristic at

0.85–0.9 Am, with a concave downward inflection at
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Fig. 5. Laboratory reflectance spectra of selected reference minerals.

Spectra are vertically offset for clarity. Bold arrows identify mineral

spectra. Light arrows indicate absorption features used in the

identification of spectra, and the center of that feature (in Am)

obtained by the continuum removal method of Clark et al. (1990a).

(A) Secondary Fe minerals; horizontal arrow at 1.0-Am notes

inflection point of jarosite. (B) Kaolinite, montmorillonite and

muscovite. (C) Epidote and chlorite.
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0.9–0.95 Am (Fig. 5A; Morris et al., 1985). The

ferrihydrite structure has similarities to that of

hematite except that some of the Fe sites are vacant

and some oxygen sites are taken by H2O and OH�
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(Murray, 1979). Electron and paired-electron transi-

tions in Fe3+ cause a strong absorption centered at

approximately 0.50 Am and a broad absorption at

wavelengths greater than 0.95 Am, respectively

(Bishop and Murad, 1995). Goethite has edge-sharing

FeO6 octahedra; paired and single Fe3+ electron

transitions (Sherman et al., 1982) cause a strong

absorption at 0.45 Am (edge at 0.55 Am) and a broad

asymmetric absorption between 0.90 and 1.00 Am
(Morris et al., 1985; Hunt et al., 1971). In schwert-

mannite [Fe8O8(OH)6SO4], the presence of SO4
2�

bridges between some edge-sharing FeO3(OH)3 octa-

hedra creates two sites for Fe3+ (Bigham et al., 1990),

which are reflected in a very broad asymmetric

absorption feature at 0.9 Am and a strong absorption

with a steep edge at wavelenghts less than 0.5 Am
(Bishop and Murad, 1995). Jarosite has edge-sharing

FeO6 octahedra bridged by hydroxyl and sulfate

groups that form sheets separated by K+ ions (Ross-

man, 1976). Bridging of Fe by both OH� and SO4
2�

gives rise to four electron and paired-electron tran-

sitions noted in the spectrum of well-crystallized

jarosite (Fig. 5A; Morris et al., 1996). Spectral

features diagnostic of jarosite include a narrow

absorption feature near 0.43 Am and a broad feature

near 0.92 Am. An inflection past 1.0 Am affects the

symmetry of the broad absorption feature (Fig. 5A). In

copiapite, Fe3+ octahedra are linked by corner-sharing

OH� and SO4 molecules to form chains, and Fe2+

occupies the center of an isolated and weakly

connected Fe(H2O)6 octahedron at the origin of the

unit cell (Fanfani et al., 1973). The strong magnetic

interaction of ferric ions through the hydroxyl bridge

gives rise to intense, narrow and symmetric absorption

features at approximately 0.43 and 0.87 Am (Ross-

man, 1975). Other Fe-bearing silicates (such as

olivine, pyroxene and Fe-bearing smectites) that

absorb in this range are not discussed because these

minerals were not observed in this study and have not

been reported to occur in rocks of the Penn Mine.

Combinations and overtones of fundamental vibra-

tional modes of molecules such as H2O, CO3
2� and

OH� in mineral structures produce absorption features

that can be observed most prominently in the vibra-

tional region of the spectrum from 1.3 to 2.5 Am (Clark

et al., 1990c). Kaolinite, muscovite and illite display

combinations of an Al–OH bend overtone and a OH

stretch (Fig. 5B; Clark et al., 1990c) that arise within
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an edge-sharing Al(OH)6 octahedral layer (gibbsite

layer) linked to sheets of SiO4 tetrahedra (Klein and

Hurlbut, 1993). In kaolinite [Al2Si2O5(OH)4], the

gibbsite layer is linked via corner oxygens to one

sheet of SiO4 tetrahedra (Klein and Hurlbut, 1993),

which affects the vibration of the Al–OH molecule to

create a double feature at 2.16 and 2.2 Am; OH

vibration stretch overtones create another doublet near

1.4 Am (Fig. 5B; Clark et al., 1990c). Muscovite

[KAl2(AlSi3O10)(OH)2] has two SiO4 layers linked via

corner oxygens to the gibbsite layer, as well as some

Al substitution for Si in tetrahedral sheets, and has

characteristic narrow features at 1.4 (due to an over-

tone of an OH stretch), 2.2 and 2.34 Am (due to an Al–

OH bend vibration mode; Clark et al., 1990c).

Although illite [(K0.65Al2.0~Al0.65Si3.35O10(OH)
2]

departs from the composition of muscovite (Klein

and Hurlbut, 1993) both have similar features at 2.2,

2.34 (due to Al–OH bend mode) and near 1.4 Am (due

to an overtone of a OH stretch; Hunt, 1979; Gaffey et

al., 1993). Montmorillonite [(Na,Ca)0.3(Al,Mg)2
Si4O10(OH)2d nH2O] displays an Al–OH bend feature

near 2.2 Am (Fig. 5B), and overtones of OH vibrational

modes and combinations of H2O vibrational modes

create a broad feature near 1.41 and 1.9 Am (Bishop et

al., 1994). Distinction among these minerals requires

high resolution and appropriate shape analysis because

differences in shape arise from structural differences

concerning the Al site (Hunt, 1979); careful analysis is

needed particularly for the smectite clays, wherein

substitution of cations such as Fe and Mg for

octahedral Al can alter the shape of the 2.2 Am
absorption and other features related to modes of the

H2O molecule (Clark et al., 1990c; Bishop et al.,

1994). Iron-bearing silicates such as epidote

[Ca2(Fe
3+,Al)3(SiO4)3(OH)] and chlorite (Fig. 5C)

can show electrical features (chlorite can show Fe

transitions near 0.4, 0.7, 0.9 and 1.0 Am), but were

most reliably identified on the basis of their vibrational

features. Chlorite [(Mg,Fe)5Al(Si3Al)O10(OH)8] dis-

plays a complex multiple band between 2.1 and 2.3 Am
that is interpreted to result from combined OH

stretching modes and Mg–OH bend modes (Hunt,

1979; King and Clark, 1989). Epidote shows a double

absorption near 2.3 Am, possibly resulting from Fe–

OH bend and OH stretching modes (Clark, 1999); an

additional feature at 1.54–1.55 Am arises from an OH

combination stretch mode as observed in clinozoisite
ED P
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[Ca2Al3(SiO4)3(OH)] and epidote by Hunt et al.

(1973), and also in greenstones at the Penn Mine.

Quartz and most feldspars, including albite, lack

molecules that produce vibrational or electrical fea-

tures over the spectral range of interest, although they

can show H2O-related features around 1.4 and 1.9 Am.

Other parameters, such as particle size, particle

orientation, particle shape, packing, porosity, type of

surface and viewing angle also affect the albedo and

the relative intensity of absorption features, or spectral

contrast, to an extent determined by the optical

properties of the material (Adams and Filice, 1967);

however, because the presence and position of

absorption features after continuum removal are

affected to a lesser extent, identification is possible

(Gaffey et al., 1993; Clark and Roush, 1984; Clark,

1999). The use of sets of continuum-removed absorp-

tion features, in addition to knowledge of the effects of

mixing and of variation of particle size in mixtures

(acquired from spectral analysis of well-known sam-

ples), helped reduce the uncertainty in assigning

spectral absorption features to the mineral occurrences.

Identification of minerals from field spectra was

carried out using the apparent continuum removal and

Band Shape Least-Squares algorithm developed by

Clark et al. (1990a,b). This algorithm identifies

minerals by matching the unknown spectrum to those

of reference minerals by removing from both an

apparent continuum (alternatively described as back-

ground reflectance) and using a modified least-squares

routine to compare their continuum-removed shapes

over a defined wavelength range. The result of the

comparison is a fit value. The fit value, if satisfactory

(i.e., above a threshold), is compared to fit values

obtained from comparison with several other mineral

reference spectra, and the best spectral match is

selected. Note that, in the context of this work, the

apparent continuum removal and algorithm of Clark et

al. (1990a) were used to identify the spectrally

dominant mineral in the field spectra by comparing

selected continuum-removed absorption bands to

those in a reference library of continuum-removed

spectra over the same spectral range. Unmixing and

correlation of spectral depth to mineral abundance

were not attempted because of the nature of intimate

mixtures of mineral grains on the surface of the waste

piles. Instead, a digital spectral library tailored to the

Penn Mine, which contained more than 100 reference
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spectra of pure minerals, and more than 30 mechanical

binary mixtures of pure minerals and naturally occur-

ring mixtures, was used for the band-shape compar-

ison. The library data were acquired with the same

instrument that was used for fieldwork and also

incorporated spectra from the U.S. Geological Survey.

Reference minerals were obtained from the Mineral

Museum at the University of California-Berkeley, the

mineral collection of the Smithsonian Department of

Mineral Sciences and from the Penn Mine, and were

characterized by XRD, sieving and visual examina-

tion. One set of reference spectra was acquired using

solar light under atmospheric conditions and geometry

similar to those encountered during the spectral survey

of the Penn Mine, and a second set was acquired in a

dark box illuminated with two quartz-halogen lights. A

large reference library with many different types of

samples of various grain sizes, packing, degrees of

purity and extent of mixing, is crucial for the spectral

identification of minerals because of the effect of these

physical parameters on the spectra.

The study of laboratory spectra of characterized

rock samples and of reference minerals was completed

prior to the interpretation of field spectra. The analysis

of the reflectance spectra of the dstandardsT provided
the wavelength ranges most diagnostic of each

mineral of interest for application of the apparent

continuum removal and algorithm. Identification of

secondary Fe minerals was focused on the comparison

between the field spectra and reference spectra in the

range from 0.75 to 1.3 Am. Identification of sheet

silicates and Mg–Fe-bearing silicates was done

mainly by identification of sets of absorption features

after continuum removal in the range from 1.9 to 2.4

Am. Despite jarosite having characteristic features in

the vibrational region, in natural mixtures with

muscovite or kaolinite the features of jarosite and

goethite were observed to be masked in the 1.9–2.4-

Am region by the more spectrally dominant features of

the sheet silicates. Many Fe minerals are weak

absorbers in the 1.3–2.2-Am region; if present as

submicrometer coatings on a substrate that is a strong

absorber in the 1.3–2.2-Am region, the spectra of the

substrate dominate (Sherman et al., 1982). This type

of association illustrates the difficulty in identifying

minerals from the spectra of geological materials,

many of which are intimate mixtures of fine-grained

to amorphous minerals. Reflectance spectra of mix-
F

tures are a nonlinear expression of the combined

spectra of the pure mineral end-members and their

abundances, in a way that reflects the accessibility of

light to each mineral grain, the complexity of

intergrain and intragrain light reflection and scatter-

ing, and the optical properties of each type of mineral

grain (Adams and Filice, 1967). In the study of

secondary minerals, variations in grain size that affect

the relative intensities of overlapping absorption

features must be considered because small secondary

minerals commonly coat larger particles and dominate

the reflectance spectra (Gaffey et al., 1993).
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ROO

5. Results and discussion

5.1. Interpretation of reflectance spectra

Secondary Fe minerals in rock samples were

identified, using the apparent continuum removal and

band-shape least-squares algorithm, on the basis of the

diagnostic Fe3+ absorption in the electrical part of the

spectrum from 0.4 to 1.3 Am. Absorption edges and

peaks were not used in the identification process. The

secondary Fe minerals occur as fine-grained powdery

coatings or as a thin laminate on oxidized pyritic schist.

When powdery coatings of jarosite were identified by

XRD, confirmation by spectroscopy was unambigu-

ous. For jarosite coatings too thin to be detected by

XRD, the spectra displayed typical features of jarosite

at 0.43 and 0.92 Am after continuum removal (Fig. 6A).

Quartz-muscovite pyritic schist in which secondary Fe

minerals represented a minimal fraction on the surface

typically yielded high albedo and relatively flat

reflectance spectra with poorly defined features in the

electrical region (Fig. 6B). Samples of rock chips

consisting of various proportions of pyritic schist,

greenstone, gravel and ferruginous precipitate typically

contained a mixture of jarosite and goethite, with only

jarosite unambiguously detected by XRD. Analysis of

these complicated spectra (Fig. 6C) identified only the

most spectrally dominant phase in the mix, although

other nanophase Fe minerals may have been present.

As the identification method is geared to comparison

after continuum removal of absorption features, spectra

with extremely weak features were taken to represent

unidentifiable Fe minerals or poorly crystallized Fe

substances if no match was found. Identification of
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poorly crystallized nanocrystalline (grain size b9 Am)

Fe3+ minerals, which may be common as pigmentary

agents in rocks in the waste piles, is difficult because of

the lack of knowledge of their spectral features in

natural mixtures, such as those containing well-crystal-
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lized Fe minerals (Morris et al., 1993; Bishop et al.,

1998). Sulfides, the ultimate target of most acid-

drainage remediation, generally can be readily identi-

fied in the field through visual examination. Sulfides

have very low reflectance and cannot be easily

identified in reflectance spectra except where well

exposed and in high concentration (Swayze et al.,

2000).

Identification of sheet silicates, Fe silicates, carbo-

nates and non-Fe sulfates was conducted in the region

from 1.9 to 2.4 Am by analysis of absorption features

after continuum removal. Minerals containing Fe–

Mg–OH, such as chlorite and epidote, which show

very similar absorption features, can be distinguished

by slight shape differences in the 2.3-Am feature. If

both chlorite and epidote were present, the spectra of

rock samples after continuum removal consistently

showed multiple bands and shoulders between 2.25

and 2.3 Am, plus narrow bands at 2.1 Am, attributable

to OH in chlorite, and a band at 1.54 ı̀m attributable to

OH in epidote (Fig. 6C). Sheet silicates containing

Al–OH were identified by band-shape analysis of the

region between 2.2 and 2.34 Am. Rock samples

containing muscovite yielded reflectance spectra with

narrow features at approximately 2.2 and 2.34 Am.

Narrow shoulderless features at 2.2 Am are character-

istic of muscovite. Kaolinite was identified on the

basis of the characteristic double-absorption feature in

the 2.16–2.2-Am region (Fig. 6B). Slight symmetry

differences in the 2.2-Am absorption feature attributed

to muscovite indicated slightly different spectral

behavior of the Al–OH bond in muscovite mapped

as bmuscovite 1Q and bmuscovite 2Q in Fig. 7.

Analysis of laboratory reflectance spectra of well-

characterized rock samples and their corresponding

field reflectance spectra served as a guide for the

interpretation of field reflectance spectra and the

application of the apparent continuum removal and

band-shape least-squares algorithm.
Fig. 6. Laboratory reflectance spectra of selected rock specimens

collected at the Penn Minesite. The inserts list the minerals

identified by XRD, with each accompanied by the letter used to

identify its corresponding signature feature in the spectra. Arrows

indicate spectral absorption features used to identify minerals from

the laboratory spectra and the centers of those features after a

continuum has been removed. (A) Oxidized muscovite-quartz

schist. (B) Unoxidized pyritic muscovite-quartz schist. (C) Green-

stone; G=goethite.



RRECTED P
ROOF

ARTICLE IN PRESS

840
841

842
843
844
845
846
847
848
849

850
851
852
853
854
855
856
857
858
859
860

Fig. 7. Distribution of minerals on mining waste piles at the Penn Mine site as derived from reflectance spectra acquired over discrete localities.

WP1 through WP6 are waste piles 1 through 6 (no spectra were acquired over WP6). HR1: Hinckley Run pond 1; MRRES: Mine Run reservoir.

(A) Distribution of epidote and chlorite. (B) Distribution of muscovite and kaolinite.
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5.2. Mineral zones discerned and environmental

implications

Interpretation of the field spectra was used to create

the mineral maps depicted in Figs. 7 and 8. These

maps identified at least one area of low potential

AMD generation, in a wide area of disturbed green-

stone bedrock. Greenstones at the Penn Mine are

sulfide-poor and do not present a high risk of AMD

generation. Areas were mapped as greenstone if the

field spectra showed the presence of epidote and
chlorite, the former of which occurred only in

unmineralized greenstone, whereas the latter is

present in both greenstone and in mineralized mine

waste.

Among the Al phyllosilicates, muscovite and

kaolinite were predominant in the waste-rock piles.

Reactions of muscovite with acidic solutions pro-

duced by sulfide oxidation can result in the

production of kaolinite and other clay minerals

and in the release of K necessary for jarosite

precipitation (Ritchie, 1994); detectable areas of
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Fig. 8. Distribution of secondary Fe minerals at the Penn Mine. Sites are labeled as in Fig. 7 (no spectra were acquired over WP6). (A)

Distribution of copiapite and jarosite, plus mixtures of jarosite and goethite, indicative of low-pH environments. (B) Distribution of goethite and

hematite, indicative of higher pH environments.
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UNCkaolinite were expected where sulfide oxidation was

thought to be intense enough to produce significant

muscovite dissolution, but such areas were not

detected. Kaolinite was mapped in waste pile 2

and in the southeastern corner of waste pile 3, in

areas known to have a thin soil cover and wherein

kaolinite might have been the product of weathering

of rock unrelated to AMD (Fig. 7B). Other kaolinite

areas in waste piles 5, 2 and 3 might have been

related either to muscovite dissolution or to hydro-
thermal alteration such as reported by Peterson

(1985).

Fig. 8A and B indicate the four types of secondary

Fe minerals mapped at the Penn Mine. Iron sulfates

such as copiapite and jarosite that typically accumu-

late in low-pH environments (pH 0.8–3.5; Nordstrom

et al., 1978) that were caused by rapid erosion and

oxidation of sulfides, as well as evaporation of ponded

AMD, near the center and topographically higher

areas of the waste-rock piles. Surrounding the
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copiapite-jarosite centers are jarosite and mixtures of

jarosite+goethite, which suggest higher pH areas

where pore and surface water was less acidified by

the AMD process. Pure goethite was mapped around

jarosite, in areas typically near the outer limit of the

area surveyed, indicating even higher pH farther away

from oxidation centers. Rare occurrences of higher pH

minerals near low-pH ones are attributed to irregular

microtopography on the waste piles, which promoted

fast erosion of material in higher areas and the

ponding of surface waters at lower elevations. Given

the irregular surface on top of waste piles at the time

of the survey, the distribution of these minerals could

have been better resolved using a sampling interval

smaller than 5 m.

In terms of AMD generation, the accumulation of

copiapite and jarosite point to more acidic conditions

than elsewhere on the dump surface, and indicate the

source areas of AMD. The occurrence of low-pH

minerals indicates a relatively immature waste-rock

pile that had a high potential for AMD release. The

accumulation of copiapite 2 weeks after a series of

storms suggests that an even larger and more

significant buildup of soluble Fe sulfates likely

occurred and the end of each dry season. Given the

solubility of minerals such as copiapite, the contribu-

tion of metals and sulfate to Camanche Reservoir

from soluble sulfate salts was not insignificant. The

occurrence of copiapite in high and unsheltered areas

of the waste-rock piles, rather that in places sheltered

from the rain, leads the authors to believe that

copiapite observed during this study precipitated from

evaporating water during the 2-week dry period.

Goethite accumulation is distal to the active

oxidation centers, indicating an increase in the pH

of the aqueous effluents as they move away from the

unsaturated waste piles (Swayze et al., 2000).

Hematite is abundant only where the lithology is

dominated by greenstones, in areas with iron and steel

infrastructure waste, and in areas near non-acidic

standing water.
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6. Applicability of method

Use of digital mapping methods at the Penn

Minesite has the advantages of mapping efficiency

and adaptability, which are crucial factors if the large
ED P
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number of abandoned mines still to be characterized is

considered. During the survey, all information was

available to the mapping team immediately. Thus, the

survey could be modified quickly, control points

could be added or discontinued as needed, and

informed decisions could be made about how best to

use the limited time, as storms threatened to shorten

the field work period.

By using a field spectrometer close to the target

area on the ground, we believe noise introduced by

atmospheric water is minimized in comparison to

high-altitude remote-sensing platforms. Over most

areas at sea level, water molecules strongly absorb

light at about 1.4 and 1.9 Am, with other minor

regions of interference at 0.69, 0.76, 0.94 and 1.13

Am (Vane et al., 1993). During the survey of the Penn

Mine, light in the 1.4-Am region was not completely

absorbed by atmospheric water, and interference at

0.9 Am and other regions was minimal because of the

low humidity conditions, the short distance between

the target and probe, and frequent optimization of the

instrument with a white reflectance standard.

Reduced water-related noise in ground-based reflec-

tance spectroscopy provides a definite advantage over

high-altitude remote-sensing platforms, for which

data processing and noise reduction involve the use

of probabilistic models that have little to do with

actual atmospheric conditions on the day of data

acquisition.

The use of a non-contact reflectance spectrometer

facilitated the acquisition of reflectance spectra of the

inaccessible steep sides of waste piles by allowing

mineral identification of surfaces at a distance from

the instrument. The use of a non-contact spectrometer

also facilitated the future use of the ground-based data

for ground-truthing of high-altitude hyperspectral

data; the combination of airborne (or high altitude)

with detailed ground-based hyperspectral data is

commonly the optimal route for highly detailed

characterization of complex environments such as

abandoned mines.

Information in mineral maps (Figs. 7 and 8) that

describe the surface weathering and acid-producing

conditions at each waste pile are useful not only to

those interested in the mineralogy of AMD environ-

ments, but also to governmental or private agencies in

charge of remediating (or preventing) environmentally

problematic sites. Swayze et al. (2000) showed the



T
D

ARTICLE IN PRESS

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

1003

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042

1043
1044

I.C. Montero S. et al. / Chemical Geology xx (2004) xxx–xxx 17
C

cost-effectiveness of obtaining hyperspectral remote-

sensing data over the California Gulch Superfund site

at Leadville, CO, as a guide to remediation efforts.

Mineral maps such as Fig. 8A can also be useful to

estimate the impact of the dissolution of soluble Fe

sulfates to surface water bodies or stormwater

management and treatment systems.

Mapping of mineral zones at the Penn Mine based

on interpolation between survey points revealed an

area of 1070 m2 on the waste-rock piles that was

overlain by a mixture of jarosite and copiapite. Using

conservative assumptions that the Fe-sulfate minerals

occur within the top 0.1 cm yields a Fe sulfate

volume of 1070 cm3. If copiapite, of density 2.1 g

cm�3 (Gaines et al., 1997), constituted as little as

10% of this volume, an estimated mass of 2247 g of

copiapite existed on the surface of the waste-rock

piles. Dissolution by rain of those 2247 g of

copiapite would result in a sudden release of

approximately 1035 g of sulfate to surface water in

addition to that contributed by other sources. Similar

calculations can be carried out for metals present in

the structure of Fe sulfates such as copiapite (Fe, Cu,

Zn, Pb, Al, Mn, Mg and K) in order to estimate the

mass of metals to surface water after dissolution. Use

of mineral maps constructed from data acquired

before the start of the rain season could anticipate

and potentially help prevent bigger releases of sulfate

and metals.
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7. Conclusions

The use of an integrated digital mapping system

proved to be an efficient way to map mine wastes

accurately and in detail at the relatively small,

abandoned Penn Mine. Most of the surface oxidation

and acid-production activity was focused in waste

piles 2, 3, 4 and the eastern part of pile 5, whereas

the western part of waste pile 6 has mostly

unmineralized greenstones and secondary minerals

that precipitate at a higher pH. Observations of this

type enable the translation of the mineral maps into

remediation-priority maps, in which the piles that

host high concentrations of low-pH minerals are

interpreted to have the most potential to release

AMD and thus could be scheduled for removal at an

optimal stage of the remediation. Mineral maps
 P
ROOF

showing the distribution of soluble metal-bearing

sulfate salts are also useful in the design and

placement of stormwater diversions, berms and

neutralization basins.

Results such as those derived in this study can be

can be used to aid both the interpretation and the

ground-truthing of remote-sensing data, thereby

enlarging the area that can be mapped and increasing

the accuracy of delineation of known and unidentified

AMD-generating sites. The advantages of using a

digital, portable mapping system in combination with

a portable spectrometer with DGPS and supporting

laser rangefinder were evident in light of the con-

strained working environment in which time was the

scarcest resource. Maps derived from the low-altitude,

low-atmospheric-noise, and closely sampled spectra

yielded abundant information regarding the distribu-

tion of AMD-related minerals on the surface of waste-

rock piles at the Penn Mine. The mineral maps offer a

detailed and complete view of the mineral distribution

on the surface of the waste-rock piles and surrounding

areas, thus offering a mine-wide view of the processes

at play in the generation of AMD.
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